GOAR, ALLISON & ASSOCIATES, INC.

Sulfur Degasification— The D'GAASS[™] Process

By:

Elmo Nasato, P. Eng. and Travis A. Allison, P.E.

Goar, Allison & Associates, Inc. 1902 Sybil Lane Tyler, Texas 75703 U.S.A.

Presented at:

Sulfur Recovery Symposium Brimstone Engineering Services, Inc. and Brimstone Instrumentation Ltd. September 23–26, 1997

Abstract

Goar, Allison & Associates, Inc. (GAA) has developed and received a patent for the D'GAASS Sulfur Degasification Process. The process is a simple, low capital cost and low operating cost degassing process that achieves less than 10 ppmw H₂S equivalent in liquid sulfur.

The unique design features of the D'GAASS Process allow for easy retrofitting to an existing plant or incorporation into grass root plants. The small flow of pressurized gas waste stream can easily be recycled to the SRU main burner, thus eliminating the degassing process as an emission source.

The first D'GAASS unit was retrofitted September 1996 to the 160 LTPD Sulconam Facility located in Montreal, Canada. This 160 LTPD D'GAASS Unit has been tested at various combinations of process parameters with all analytical work performed by Alberta Sulfur Research Ltd. (ASRL) using the state-of-the-art Fourier Transform infrared (FTIR) analytical procedure.

Test results have verified that the D'GAASS Process is capable of degassing liquid sulfur to below 10 ppmw of combined H_2S and H_2S_x .

Introduction

Sulfur degasification is a process that removes dissolved H_2S and H_2S_x vapor from produced liquid sulfur. Undegassed sulfur presents odor and potential toxic hazardous conditions in the storage, loading and transport of liquid sulfur. Also, up to 80% of H_2S/H_2S_x present in the liquid can be retained on solidification. The gradual release of H_2S gas from sulfur in the solid form presents odor problems. Also, the gas gives voids and surface imperfections which weakens the solid, and increases "dusting" in handling.

Tests have shown that H_2S concentrations of greater than 20 ppmw in liquid sulfur can result in closed vapor spaces with H_2S concentrations greater than the lower explosion limit of 3.5%. Obviously, the explosivity concern is also coupled with the H_2S toxicity issue. Toxic levels of H_2S can build up in closed vapor spaces of sulfur pits and transport containers. Also, high levels of H_2S may accumulate near sulfur pit and sulfur loading areas.

Degasification is clearly the best method of preventing H_2S release from liquid or solid sulfur, and the associated problems with odor, explosivity and toxicity.

The patented D'GAASS Process reduces combined H_2S/H_2S_x to 10 ppmw in sulfur product in a simple, low capital and operating cost method without catalyst addition. The process operates at elevated pressure, thus allowing the use of a small, low residence time vessel that is easily retrofitted external to sulfur pits. The elevated operating pressure easily allows for recycling of the overhead vapor stream back to the SRU main burner, thus eliminating sulfur degassing as an emission source. The first commercial D'GAASS Unit was commissioned in September, 1996 at Sulconam's Montreal Facility. The D'GAASS Process was retrofitted to the existing 160 LTPD SRU at Sulconam. The design and operating results of the D'GAASS Unit at Sulconam are presented in this paper.

Existing Technologies

The existing major sulfur degassing technologies use a combination of mechanical, catalytic and/or oxidation techniques for the removal of H_2S/H_2S_x from liquid sulfur⁽²⁾. Several commercial technologies are capable of achieving the generally accepted residual H_2S standard of 10 ppmw. The relative capital cost of the existing technologies is approximately equal ⁽³⁾. While the existing technologies are capable of achieving the 10 ppmw specification, some of the limitations of the existing technologies include:

- 1) High capital cost
- 2) Difficult to retrofit to existing SRU
- 3) High operating cost
- 4) Long residence time, thus large footprint
- 5) Catalyst requirement with possible negative impact on (a) sulfur quality (b) salt formation resulting in equipment plugging
- 6) Additional SO_2 emissions because degasification waste stream (containing H_2S , SO_2 and/or S) is fed to the incinerator.

The D'GAASS Process addresses all these limitations in a simple, low capital and operating cost, zero emission technology that degasses liquid sulfur to less than 10 ppmw combined H_2S/H_2S_x .

New Approach – The D'GAASS Process

The D'GAASS Process exploits the favorable thermodynamic equilibrium for the oxidation of H_2S , while addressing the kinetic limitations of the same reaction. Liquid sulfur produced by the Claus process typically contains 200-250 ppmw H_2S/H_2S_x . A major part of the H_2S is bound to long poly-sulfur molecules, and is called H_2S_x . The H_2S_x exists in equilibrium with H_2S dissolved in sulfur. Thus, removal of H_2S from the liquid results in decomposition of H_2S_x to H_2S , allowing ultimate total H_2S/H_2S_x degasification to below the targeted 10 ppmw total.

Kinetic experiments have indicated that the rate equation, and hence, the order of the reaction is first order with respect to H_2S concentration. The overall partial oxidation of H_2S and H_2S_x to sulfur is given by the elementary reactions:

$$H_2S + \frac{1}{2}O_2 \rightarrow H_2O + S$$
 (1)

$$H_2S_x + \frac{1}{2}O_2 \longrightarrow H_2O + S_x$$
 (2)

The D'GAASS Process is designed to operate at elevated pressures to address the kinetic limitations, resulting in a small contactor that achieves the target 10 ppmw H_2S/H_2S_x .

D'GAASS Design Parameters

The key to the D'GAASS Process is the elevated operating pressure with the fixed vessel internals. Degasification is carried out in a pressurized vertical vessel, which contacts the undegassed sulfur with pressurized process air (instrument or clean utility air). The undegassed sulfur is pumped to the vessel and intimately contacted with air across special fixed vessel internals. Operating pressures are typically in excess of 60 psig. The elevated pressure improves the kinetics of the oxidation process. Due to the elevated pressure, no catalyst addition is required; the elevated pressure in combination with the fixed internals is sufficient to degas the liquid sulfur to below 10 ppmw H_2S/H_2S_x .

The fixed vessel internals are sized based on GAA tower modeling criteria. Commercial data are not available for liquid sulfur/air systems operating at elevated pressures. Effective vapor-liquid contacting with sufficient reaction residence time is necessary for effective degassing. Also, a properly sized wire mesh mist eliminator is utilized to minimize potential sulfur liquid entrainment in the overhead vapor stream.

The D'GAASS Process Advantages

As a result of the improved kinetics due to the elevated pressure with the special fixed internals, the D'GAASS Process has several economic and operating advantages.

a. <u>Size and Capital Cost</u>

Operation at elevated pressure reduces the size and reaction time requirements. The commercial 160 LTPD unit is an 18" O.D. vessel. With a tower height of 30', or less, the D'GAASS contactor requires a small footprint and is easy to retrofit. The carbon steel construction makes this small vessel relatively inexpensive; the fixed internals cost in the range of 20-30% of the vessel cost. Since the process is external of the sulfur pit, downtime for installation, if any, is minimal. The overall size is small and the equipment cost is low.

b. Low Operating Cost

For continuous operation, the improved kinetics results in much lower air requirements than other commercial units. Typical annual operating costs for the sulfur pumping and process air requirements are given below.

SRU Capacity	Annual Operating Cost ⁽¹⁾
LTPD	(\$)
100	2,000
1000	20,000

Note 1. Based on electricity cost of 4¢/kwh and 365 days of continuous on-line operation.

With a single, fixed-internal contactor located external of the sulfur pit, maintenance costs are projected to be very low. Also, due to the simplicity of the process the projected on-line time is expected to be near 100%.

c. <u>Sulfur Degassing with Zero Emissions</u>

The elevated D'GAASS operating pressure allows recycling of the overhead vapor stream back to the front end of the SRU. The waste stream contains less than 0.1% H₂S and thus is essentially an air stream. Due to the small flow and elevated pressure the stream can be recycled to the front portion of the SRU without metering the stream and without adverse effects to the SRU main burner control.

For SRU's with tail gas cleanup units that achieve 99.9% + SRU recovery, conventional degassing systems that vent the vapor stream to the incinerator can be a significant emissions source. Emissions from the degassing systems can be equal to the SRU/TGCU emissions. The D'GAASS Process reacts 90% plus of the H₂S/H₂S_x feed and the overhead stream can be recycled to the SRU, resulting in zero emissions attributable to the degassing system.

d. <u>Operating Flexibility</u>

The D'GAASS Process can be operated in several different modes:

- I) Continuous Operation (Figure 1)
- II) Batch Operation (Figure 2)
- III) Continuous Recycle with purge (Figure 3)

The continuous operation is based on degassing at the rate of sulfur production. Undegassed sulfur is pumped to the vessel from the collection or sulfur pit at the rate of sulfur production and intimately contacted with air. The degassed sulfur flows from the contactor to a separate sulfur production pit or tank. The pressurized vapor flow containing a small amount of H_2S flows from the degassing section to either the SRU main burner (not an emission source) or the to the incinerator (small emission source).

In batch operation, the sulfur is pumped from the sulfur pit to the vessel at a flow rate equal to the transfer or loading rate and intimately contacted with air. The degassed sulfur flows from the contactor to the transfer destination or loading facility. The pressurized vapor flow containing a small amount of released H_2S flows from the degassing section to either the SRU Main Burner (not an emission source) or to the incinerator (small emission source).

For continuous recycle operation with purge, the sulfur is pumped from the sulfur pit to the vessel at preferably a greater flow rate than the sulfur production rate and intimately contacted with air. The degassed sulfur flows from the contactor back to the sulfur production pit. The pit geometry can sometimes be used directionally to create separate zones of degassed sulfur and undegassed sulfur. Some improvement in product quality can be obtained by locating the degassing feed pump at the end of the pit nearest the raw sulfur inlet(s), while locating the degassed sulfur return line and sulfur loading pump at the opposite end of the pit. Creation of separate zones in the pit can be enhanced by operating the D'GAASS Process at rates significantly higher than the sulfur production rate of the SRU. The pressurized vapor flow containing a small amount of released H₂S flows from the degassing section to either the SRU Main Burner (not an emission source) or to the incinerator (small emission source).

Advantages of the D'GAASS Process advantages can be summarized as:

- 1) Low capital cost
- 2) Low operating cost
- 3) Small footprint
- 4) Easy to retrofit
- 5) Zero emission sulfur degassing
- 6) Option to operate in continuous, batch or recycle-purge mode
- 7) Not intrusive to the sulfur pit.

Operating Results

The D'GAASS Process was retrofitted to the 160 LTPD SRU at the Sulconam Treating Facility, Montreal, Quebec in September, 1996. The commercial (pilot) unit was built with facilities to allow measurement of:

- 1) pressure, temperature and flow of feed streams
- 2) sample connections of feed streams, product streams and contactor intermediate profile.

All analytical measurements were performed by Alberta Sulfur Research Ltd. (ASRL) at site. Measurement of residual H_2S/H_2S_x in the liquid sulfur feed and product streams was performed using ASRL's Fourier Transform Infrared (FTIR) spectroscopy method. Traditionally, wet chemical methods have been used but wet chemical methods are laborious and inaccurate unless done carefully. The FTIR method allows for accurate and repeatable testing of a large number of samples. The effluent gas composition was determined by an ASRL pH methodology and Draeger tubes.

The degassed sulfur contains 10 ppmw H_2S / H_2S_x without the requirement of catalyst addition. The mechanical strength of sulfur is related to the amount of polymeric material in the sulfur ⁽⁴⁾. Air-degassed sulfur contains significant quantities of polymers and as a result has a high compressive strength. In contrast sulfur degassed with catalysts contains no polymeric sulfur and thus has low compressive strength. High compressive strength is desirable for sulfur forming; lower compressive strength can result in higher dust emissions.

Analysis of the overhead vapor stream and material balance calculations indicate that over 90% of the H_2S and H_2S_x are reacted.

Conclusions

The D'GAASS Process is a sulfur degasification process that can achieve 10 ppmw residual H_2S/H_2S_x in sulfur without the use of a catalyst. Over 90% of the H_2S/H_2S_x fed is oxidized.

Operation at elevated pressure results in low capital cost, low operating cost and facilitates degassing operation with zero emissions.

Due to the elevated operating pressure, the D'GAASS contactor is small in size. Location of the D'GAASS vessel external of the pit in combination with the small size makes the D'GAASS process easy to retrofit to an existing facility or incorporate in a grass root design.

References:

- 1. "Process for the High Pressure Degassing of Hydrogen Sulfide From Liquid Sulfur" Patent No. 5,632,967.
- "Studies on the Release of H₂S From Liquid Sulfur", P.D. Clark, T.J. McDonald and K.L. Lesage, Presented at the 1992 GRI Liquid Redox Conference, Austin, Texas p.46-47.
- 3. "A Comparative Study of Sulfur Degassing" The Pritchard Corporation, Section 9.0, March 1997.
- 4. "Investigations into the Chemical Mechanisms of Liquid Sulfur Degassing and their Relevance to Industrial Degassing Systems" pp. 54-56, P.D. Clark, K.L. Lesage, T. McDonald, A. Mason and A.K. Neufeld, 1994.

Acknowledgements:

The Authors would like to thank the following individuals for their significant contributions:

- Dr. Peter Clark, President ASRL
- Mr. Serge Payette, Director of Operations, Sulconam
- Mr. Ken Roy, Mr. Pierre Boudreault and Sulconam Staff
- Dr. Jim Hyne.
- 1

¹ File(Word-hb) D'GAASS.EN.Doc